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Abstract. We introduce the strongly interacting trap model, a version of Bouchaud’s trap model
for glasses (Bouchaud J-P 1992J. PhysiqueI 2 1705). At finite temperatures the model exhibits
glassy relaxation over intermediate timeframes but reaches a steady state at finite times. In the
limit of zero temperature and with a suitably renormalized timescale the model maps onto the Bak–
Sneppen model, widely studied in the context of self-organized criticality (Bak P and Sneppen K
1993Phys. Rev. Lett.714083). Hence zero temperature is a critical point in all dimensions. These
claims are supported by mean field analysis of the stationary solution and numerical simulations
of a finite-dimensional lattice model.

1. Introduction

Our understanding of complex physical systems is often aided by the construction of simple
mathematical models. A prime example from glass theory is the trap model of Bouchaud [1,2],
which describes a system’s relaxation purely in terms of activated processes between potential
energy wells of various depths. With only a few assumptions the model manages to reproduce
many of the phenomena commonly associated with glasses, such as a crossover to non-
equilibrium behaviour as the temperature is lowered, and ageing in the low-temperature regime.
Furthermore, the model is sufficiently generic to apply to structural as well as spin glasses,
and has recently been extended to the study of rheology in glassy systems [3–6].

However, there are a number of spin-glass models that exhibit a continuous phase
transition, or critical point, in the limit of zero temperature, quite unlike the current realization
of Bouchaud’s trap model. These include Stein and Newman’s model, which maps onto
invasion percolation at a temperatureT = 0 [7, 8]; the two-dimensional Ising spin glass [9];
and the Sherrington–Kirkpatrick model under infinitesimal variations of the external magnetic
field [10].

In this paper we introduce a modified version of Bouchaud’s trap model which incorporates
a form of interaction between different subsystems. It is shown that in the limit of zero
temperature this model maps onto a self-organized critical system known as the Bak–Sneppen
model [11,12], soT = 0+ is a critical point in all dimensions, including the infinite-dimensional
mean field model. Although the Bak–Sneppen model was originally devised to explain the
pattern of evolutionary bursts in the fossil record known as ‘punctuated equilibria’, it was
justified in terms of activated processes over (fitness) barriers and so its biological interpretation
is purely semantic.

This paper is arranged as follows. In section 2, Bouchaud’s model is briefly reviewed
before the new model is defined in its mean field form. The corresponding master equation is
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solved in the steady state. The relationship with the Bak–Sneppen model implies that the model
can also be defined on a lattice, and this modification is studied numerically in section 3. The
simulations were also employed to check the analytical predictions of the mean field equations.
Finally, our work is summarized in section 4.

2. Definition of the mean field model and the stationary solution

In Bouchaud’s formalism, the state of the system is represented by a particle (or many particles,
if the system is treated as a collection of subsystems) moving in configuration space over an
energy landscape, which is ‘rugged’ in the sense that most of the particle’s time is spent trapped
in potential wells or ‘traps’ [1,2]. Motion within traps is not explicitly incorporated; instead,
it is simply assumed that whatever dynamics is present gives rise to an activation probability
that depends on the barrier heightb and the temperatureT according to the Arrhenius form
ω0e−b/T , whereω0 fixes the timescale.

When a particle is activated it ‘hops’ to a new trap, where it remains until it is again
activated by thermal fluctuations. Thus the state of the system can be described by the
probabilityP(b, t) that it is in a trap of depthb at timet (in the many-particle interpretation,
P(b, t) is the distribution of barriers in all the subsystems). Given that the barrier heights are
distributed according to someprior distributionρ(b), thenP(b, t) evolves according to the
master equation

1

ω0

∂P (b, t)

∂t
= − e−b/T P (b, t) + ω(t)ρ(b) (1)

whereω0ω(t) is the total rate of hopping at timet ,

ω0ω(t) = ω0

∫ ∞
0

e−b/T P (b, t)db. (2)

The first and second terms on the right-hand side of (1) correspond to hopping out of and into
traps of depthb, respectively. For simplicity is has been assumed thatρ(b) is independent of
t andT , and barrier heights before and after a hop are uncorrelated.

When a steady state solution of (1) exists, it takes the form

P∞(b) ≡ lim
t→∞P(b, t) = ω∞eb/T ρ(b) (3)

usingω∞ = lim t→∞ ω(t). For a prior distribution with an exponential tailρ(b) ∼ e−b/b0

(which may be generic to glassy systems [2]),P∞(b) can only be normalized forT > b0,
when it takes the form of a Boltzmann distribution. No normalizable steady state solution
exists forT 6 b0, when the system perpetually evolves into deeper and deeper traps. In this
manner the model exhibits a phase transition from equilibrium to non-equilibrium behaviour
atT = b0, i.e. aglasstransition.

2.1. Master equation for strong interactions

Although the basic trap model described above exhibits a simple and elegant glass transition,
it has the undesirable feature that the mean barrier height diverges with time whenT 6 b0.
This suggests that there may be some mechanism currently lacking from the model which
eventually halts its progression into ever deeper traps. For instance, it is known that the
system will equilibrate at very long times if it can only sample a finite number of different
configurations [1]. Here we argue that introducing a suitable form of interaction between the
subsystems can achieve a similar effect.
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Bouchaudet alhave considered the effect of allowing each hop to slightly alter the barriers
of other subsystems [13], so we are now working strictly in the many-particle interpretation.
In their scheme, the barrier distributionP(b, t) is perturbed at a rate proportional to the overall
hopping rateω(t), giving rise to an extra term in the master equation (1) of the form

ω(t)

∫ ∞
0
T (b′ − b)(P (b′, t)ρ(b)− P(b, t)ρ(b′)) db′. (4)

For weak interactions,T (b) is narrow and (4) reduces to a diffusion-like term which was shown
to not alter the essential nature of the glass transition [13].

Here we consider the opposite extreme of a broadT (b) ≡ z, wherez is a constant. This
corresponds to a form ofstronginteraction in which every hopping subsystem causesz other
subsystems to have their barriers assignedentirely new values. This erases the memory of
the system at a ratezω(t) and, as shall be demonstrated below, ultimately removes the glass
transition. Subsystems with very large barriers that would not normally hop until very late
times will now interact instead, which on average lowers their barriers towards the mean of
ρ(b) and allows them to hop much earlier than they would in the absence of strong interactions.
Thus the interactions introduce a form ofdynamically generated cut-offinto the system.

It is straightforward to integrate (4) withT (b) = z to give the new master equation

1

ω0

∂P (b, t)

∂t
= −e−b/T P (b, t) + ω(t)ρ(b) + zω(t)(ρ(b)− P(b, t)) (5)

with the definition ofω(t) unchanged from (2). The steady state solution of (5) is non-
Boltzmann,

P∞(b) = z + 1

z

(
1 +

e−b/T

zω∞

)−1

ρ(b) (6)

soP∞(b) ∼ ρ(b) asb →∞ for all T , i.e.P∞(b) is always normalizable whenz > 0. This
suggests that there is no true finite temperature glass transition, although it has yet to be shown
that the system always approaches this stationary solution. Numerical evidence that this is
indeed the case is presented in section 3, where it is also argued that glassy behaviour may
persist over intermediate timeframes at low temperatures. For the remainder of this section
we restrict our attention to analysis of the stationary solution (6).

2.2. Steady state solution

For the case of a simple exponential priorρ(b) = 1
b0

e−b/b0, it is possible to derive an exact
expression forω∞ for z > 0. Details of this calculation are given in appendix A; here we just
quote the final result. In terms of thereduced temperaturex = T/b0, the expression forω∞ is

(zω∞)x +
sinπx

πx

{
1

z + 1
+ x

∞∑
k=0

(−zω∞)k
k − x

}
= 0. (7)

It may at first appear that the factor of sinπx on the left-hand side of (7) would imply that
ω∞ → 0 for integer values ofx. However, there is also a simple pole in the sum for suchx,
and in fact these two effects cancel. The equivalent expression to (7) for integerx is

(zω∞)−x

x(z + 1)
= (−1)x ln

(
1 +

1

zω∞

)
+
x−1∑
k=0

(−1)k(zω∞)k−x

x − k . (8)

The numerical plot of (7) and (8) given in figure 1 confirms the monotonic dependence ofω∞
on temperature.
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Figure 1. Plot ofω∞ against the reduced temperaturex = T/b0, found from (7) and (8) by the
method of interval bisection. From top the bottom, the thin curves refer toz = 10−1, 10−2, 10−3,
10−4 and 10−5, respectively. For comparison thez ≡ 0 solutionω∞ = 1− 1/x is plotted as a
thick curve.

One might expect thatP∞(b) for smallz could be expressed as just anO(z) perturbation
around thez ≡ 0 solution given in (3). In fact this is only true for temperaturesx > 2, as we
now demonstrate. Asz→ 0, (7) can be expanded in powers ofz and the higher-order terms
dropped. The identification of the leading-order term depends upon the value ofx. Forx > 1,
the leading-order term isO(zω∞) and

ω∞ =
(

1− 1

x

)
(1 +O(z)) (9)

which is just anO(z) perturbation around the original solution (3). This is not true forx < 1,
when the(zω∞)x term is now leading order and

ω∞ ≈
(

z

z + 1

)1
x
−1(sinπx

πx

)1
x

. (10)

This holds as long as theO(zω∞)x term is much larger than theO(zω∞) term, which
corresponds toz1−x � 1. This should be contrasted to the original model, whereω∞ is not
even defined forx 6 1. Repeating this procedure for integerx produces the same expression
as (9) forx > 2 andω∞ ∼ −(ln z)−1 for x = 1.

The consequence of havingz > 0 becomes apparent at higher temperatures if one considers
the distribution of barriers as a whole, rather than justω∞. By substituting (9) into the
expression forP∞(b) given in (6) and expanding in powers ofz, one readily sees thatP∞(b)
can only be expressed as anO(z) perturbation around the original solution whenx > 2; for
x 6 2, the assumption of a linear expansion breaks down. This higher-temperature divergence
can be explained by observing that, whenz ≡ 0, the mean time between hops diverges in the
stationary state forx 6 2 [2]. In contrast, whenz > 0 the mean time between interactions
approaches(zω∞)−1, which isalwaysfinite. Thus the interactions will always be significant
whenx 6 2, no matter how smallz may be.



Zero-temperature criticality in a simple glass model 469

2.3. Solution at the critical pointT = 0+

An important consequence of introducing this new form of interaction is that the system now
becomes critical in the limitT → 0+. This can be most clearly seen by considering a finite
system ofN subsystems with barriersbi , i = 1 . . . N . For smallT the system will remain
static for long periods, but when a subsystemdoeseventually hop, the probability that it had
the barrierbi is

pi = e−bi/T∑N
j=1 e−bj /T

. (11)

Since the system is finite it is always possible to identify a unique minimum barrierbmin

(assuming thatρ(b) does not contain any delta-function peaks). Suppose it is subsystemj

that has the barrierbmin, then inspection of (11) shows thatpj → 1 asT → 0+, whilepi → 0
for all i 6= j . Thus the identification of the activated subsystem is entirely deterministic—it
is alwaysthe one with the smallest barrier. This is now algorithmically identical to the Bak–
Sneppen model, already widely studied in the context of self-organized criticality [11, 12].
HenceT = 0+ is a critical point of the current model. Note that the timescale in the Bak–
Sneppen model is normalized to precisely one hop per unit time, whereas in our model the time
between hops can vary. However, as explained below, the maximum time between hops is of
the order of ebc/T with bc constant, which is finite for allT > 0. Hence we do not anticipate
any problems with, e.g., diverging moments of the distribution of hopping times.

The Bak–Sneppen model is usually defined on a lattice, in which interactions only occur
between nearest neighbours. This suggests that the current model can also be given a lattice
interpretation, and this modification is considered in section 3. However, a mean field solution
to the Bak–Sneppen model already exists [14, 15], which should be the same as theT → 0+

solution of the current model. This indeed proves to be the case for the stationary distribution
P∞(b), derived in appendix B for arbitraryρ(b),

P∞(b) ≈ z + 1

z

ρ(b)

1 + e(bc−b)/T for smallT (12)

∼ z + 1

z
θ(b − bc)ρ(b) asT → 0+ (13)

whereθ(x) is the usual theta function andbc is defined by∫ bc

0
ρ(b) db = 1

z + 1
. (14)

This is also the mean field solution to the Bak–Sneppen model, to withinO(1/N). Note
that (12) was found by takingT → 0+ after taking the thermodynamic limitN →∞. That it
agrees with the mean field solution of the Bak–Sneppen model, which corresponds to taking
T → 0+ beforeN →∞, suggests that the order of the limits may not be important for time-
independent quantities, although this may not hold for time-dependent measures.

The discontinuity inb in (13) arises from the existence of a single characteristic time
between interactions of the order ofω0ebc/T . The expected time until a subsystem with a barrier
b hops isω0eb/T , so subsystems withb � bc will almost certainly hop before interacting,
whereas those withb � bc will almost certainly interact before hopping. Only barriersb ≈ bc
will have comparable probabilities of either hopping or interacting. AsT is lowered the
distribution of hopping times becomes extremely broad, corresponding to an increasingly
narrow range ofb for which the rates of hopping to interaction are comparable, eventually
collapsing onto the single pointbc atT = 0+. Since hopping takes place over timescales much
shorter than interactions, there will only be a vanishingly small proportion of subsystems with
b < bc at any given time, as implied by the theta function in (13).
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This suggests the classification of subsystems as either ‘active’ (those withb < bc) or
‘inactive’ (those withb > bc). In this heuristic scheme, active subsystems may become inactive
by hopping into a trap with a barrier greater thanbc, but inactive subsystems can only become
active via interactions. This description is somewhat reminiscent of the contact process, a
critical model which falls into the universality class of directed percolation [16]. However, the
contact process only becomes critical when its control parameter is set to some finite value—in
effect, its value ofbc has to be set ‘by hand’. In contrast, the current model automatically finds
bc in the limiting caseT → 0+. It is in this sense that the Bak–Sneppen model can be said
to be ‘self-organized’ critical. A fuller discussion of the relationship between this model and
self-organized criticality will be made elsewhere [17]. Note that the Bak–Sneppen model and
the contact process have different driving terms and fall into different universality classes†.

3. Finite-dimensional lattice model

The analysis of the preceeding section is mean field in the sense that the interactions have
been assumed to act homogeneously throughout the system. In this section the model is given
spatial definition by identifying each subsystem with a single site of ad-dimensional lattice.
The subsystems become thermally activated as before, but now each activation event can only
alter the barriers of adjacent lattice sites, so the interactions are strictly short-ranged. Only a
one-dimensional lattice is considered here, but the model can be defined in higher dimensions
in a similar manner.

The lattice model is defined as follows. A single barrier heightbi is stored in each site
i = 1 . . . N of a one-dimensional lattice of sizeN , with initial conditions to be specified below.
At the start of each time step, every site is checked to see whether it becomes activated, which it
does with a probability e−bi/T . Any activated subsystems hop to a new trap with a new barrier
bi drawn fromρ(b). Furthermore, the barriers in the adjacent sitesbi−1 andbi+1 are also
assigned new values—this represents the strong interactions. Note that in these scheme each
site hops at most once per time step. This discrete time variable differs from the continuous
time employed in the mean field equations in section 2, but should make little difference when
the overall rate of activity is low.

Thus every activation event causesthreebarriers to change value—the activated site itself,
and the barriers in both of the adjacent sites. This would appear to fixz = 2. However, smaller
values ofz can be incorporated by stipulating thatbi−1 andbi+1 only change values with a
probabilityz/2, where now 06 z 6 2. Simulation results for variousz andT are discussed
in sections (3.1) to (3.3) below. Periodic boundary conditions have been assumed throughout,
sobN+1 ≡ b1. The prior distribution was taken to be the simple exponentialρ(b) = 1

b0
e−b/b0.

Care was also taken to ensure that the supplied random number generator gave good statistics
deep in the tail of an exponential distribution.

3.1. Existence of a stationary solution

The simulations were first employed to see whether or not there exists a stationary solution in
the lattice model, and if so, how robust it is with respect to the initial conditions. To test this,
two very different initial configurations were used. The first was an initial ‘quench’ where all
thebi were drawn fromρ(b) but spatially uncorrelated. These runs were then repeated with
the same parameters but starting with everybi arbitrarily large except for a single ‘seed’ at the
origin with b0 = 0 (or any finite value). In both cases the barrier distributionP(b, t) appeared

† The contact process also has slightly different interaction terms to the Bak–Sneppen model, but these can be altered
without changing its universality class [18,19].
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Figure 2. Plot ofω∞ againstx for z = 1 (upper data sets) andz = 0.1 (lower data sets). In both
cases, the circles and squares correspond to simulation results for the RNN and one-dimensional
models, respectively. The system size wasN = 104 and the estimated error bars are smaller than
the symbols. The solid curves are the mean field predictions from (7) and (8).

to converge to the same distributionP∞(b), which remained steady within the timeframe of
the simulations, typically 107 time steps (although the situation is not so clear for theT = 0+

limit in low dimensions; see section 3.3). Since the initial conditions were so very different,
it seems likely that this same distribution is approached irrespective of the initial state. The
stationarity of this solution is confirmed in section 3.2.

Although it has already been shown that the mean field equations of section 2.1 admit a
stationary solution, it is by no means clear that it is always, if ever, reached. To investigate
this, the simulations were also repeated using a ‘random nearest-neighbour’ (RNN) algorithm
in which the neighbours of the hopping sites are chosen entirely at random from the remainder
of the system, with new neighbours being chosen at every time step. Apart from finite size
effects and the discrete time variable, this should behave identically to the mean field model.
Simulations of the RNN model show that the same stationary solution was reached for both
sets of initial conditions, as in the one-dimensional case. Furthermore, the numerical estimate
ofω∞ was found to agree well with the theoretical predictions (7) and (8), as plotted in figure 2.

Also plotted in figure 2 are the equivalent values ofω∞ for the one-dimensional model,
which consistently lie under the mean field values. This is because the interactions are now
spatially correlated with the hopping sites and are more likely to occur in regions of high
activity, i.e. low barriers. Since the interactions tend to decrease barrier values towards the
mean ofρ(b), their effect onP(b, t) will be weakerin the one-dimensional model than the
corresponding mean field system. Thus the stationary state will not be reached until much later
times, when the activity will have decayed to smaller values, as in figure 2. In theT → 0+

limit the limiting activity is ω∞ ∼ e−bc/T (see appendix B), so as a corollarybc should be
higher in lower dimensions, and indeed this has already been observed in the Bak–Sneppen
model [14,15].
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3.2. Interruption of ageing

An important feature of many glassy systems is that their behaviour depends upon the time since
the initial quench, a property known as ‘ageing’. This phenomenom can be quantified by use
of the two-time correlation functionC(tw + t, tw), defined here as the proportion of sites that
have not hopped between timestw and tw + t following a quench att = 0. In Bouchaud’s
model the system becomestime-translationally invariantabove the glass transition, i.e.
C(tw + t, tw)→ Ceq(t) astw →∞whenx > 1. In contrast, whenx < 1 the system behaviour
cannot be decoupled fromtw and instead one findsC(tw + t, tw)→ Cneq(t/tw), demonstrating
that the system ages [2].

To confirm that the simulations do indeed converge to a stationary solution, it is necessary
to show thatC(tw + t, tw) converges to a time-translationally invariant solutionC∞(t). This
has been checked in both one-dimensional and RNN simulations, and in all cases stationarity
was reached after waiting timestw � tia, wheretia depends onz, T and the dimensionality. A
typical example is given in figure 3. An estimate oftia for low temperatures in the mean field
can be found by following the procedure described in [2]. This involves substituting the trial
solution

P(b, t) = 1

T
uφ(u) (15)

expressed here in terms of the dimensionless variableu = 1
ω0t

eb/T . Forρ(b) = 1
b0

e−b/b0 master
equation (5) then becomes

u2 dφ(u)

du
+ (u− 1)φ(u) =

(∫ ∞
1/ω0t

φ(v)

v
dv

)(
zuφ(u)− x(1+z)

(ω0ut)x

)
(16)

where the integral is justω(t) expressed in terms ofφ andu. Dimensional analysis suggests
that the first term on the right-hand side of (16) can be neglected for smallt . This allows a
t-independent scaling solution to be found which exhibits ageing [2]. However, ifz > 0 then,
ast →∞, the second term will become negligible and it is straightforward to show that no
self-consistent scaling solution exists. From this we infer that the ageing isinterruptedat some
finite time. The crossover timetia corresponds to times when both terms are of comparable
magnitude, which can be estimated by dimensional analysis to be

tia ∼
(

1 + z

z

)1/x

∼ ebc/T (17)

wherebc is the same as that defined in (14). Note thattia diverges rapidly asT → 0, so
ageing behaviour may persist over intermediate (possibly experimental) timeframes at low
temperatures.

3.3. Ageing in theT = 0+ limit

The analysis of theT = 0+ limit presented in section 2.3 was limited to the stationary barrier
distributionP∞(b). We now turn to consider time-dependent behaviour, which requires careful
consideration of the choice of timescale. Clearly, asT → 0+ the rate of hopping in a finite
system becomes vanishingly small and so the timescale must be normalized in some manner
to attain non-trivial behaviour. Two different timescales will be considered here. The first is
theevent timescaleτ in which precisely one subsystem from a total ofN hops per unitτ . This
is the usual choice in the Bak–Sneppen model. The second time variable we shall consider is
theavalanche timescaleτ av, defined such thatτ av increases by one unit for every avalanche
in the system, where an avalanche is defined below. Although not usually considered in
connection with the Bak–Sneppen model,τ av is more in line with the timescale employed in,
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Figure 3. The two-time correlation functionC(tw + t, tw) plotted againstt for a one-dimensional
lattice withN = 104, z = 0.1, x = 0.35 andω0 = 1. From left to right,tw = 100, 101, 102, 103,
104, 105 and 106. Note that the last two curves overlap. The system was started from an initial
quench with thebi drawn fromρ(b) and uncorrelated.

e.g., the sandpile model [20]. The existence of ageing behaviour depends crucially upon which
timescale is adopted, as we now demonstrate.

Boettcheret al have found that the Bak–Sneppen model exhibits a form of ageing in one-
and two-dimensional simulations starting from a single active seed [21,22]. We have adapted
our code to employ event time in simulations starting from an initial quench and have also
observed ageing in the one-dimensional model, butnot in the RNN model. Results from the
one-dimensional simulations are given in figure 4, which appears to exhibit ageing for the
longest times we were able to simulate, up toτw = 108 on aN = 2× 104 lattice, although the
statistics become very noisy at later times. For largeτw the data shows some indications of
collapse onto a scaling functionC∞(τ/τw), as demonstrated in figure 5. In contrast the results
from the RNN simulations (not given) fail to exhibit any form of ageing whatsoever.

It is possible to provide a rough derivation of the ageing behaviour observed in our
simulations by considering the pattern of activity of hopping sites as the system evolves
from its initial quench. This argument employs known results for the Bak–Sneppen model,
which we do not attempt to justify here; the reader is instead referred to [12] for a complete
description. Initially, the location of the hopping site moves around the system at random, but
asτ increases it tends to repeatedly visit one part of the system for a finite time before jumping
to another, uncorrelated region. These localized spatiotemporal regions of activity are known
asavalanches. The expected duration of the avalanche〈S〉 and the expected number of sites
covered during the avalanche〈ncov〉 diverge with time according to [12]

〈S〉 ∼
( τ
N

) γ

γ−1
(18)

〈ncov〉 ∼
( τ
N

) 1
γ−1

(19)
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where the critical exponentγ depends on the dimensionality. In low dimensionsγ > 1, but
γ = 1 in high dimensions where the scaling relations given by (18) and (19) break down. In
this case the active site never remains localized in any one part of the system for any significant
time and the following argument does not apply.

As before, letC(τw + τ, τw) be the proportion of the system that has not hopped between
timesτw andτw + τ . ClearlyC will decrease when the avalanche jumps to a new part of
the system. If we now coarse grain over length and timescales much larger than〈S〉 and
〈ncov〉, then, as consecutive avalanches are spatially uncorrelated, we can write the following
continuous differential equation forC:

dC

dτ
≈ −C

N

〈ncov〉
〈S〉 . (20)

C only decays if the avalanche jumps to a part of the system it has not already visited, hence the
factor ofC on the right-hand side of (20). Furthermore, each avalanche changes a proportion
〈ncov〉/N of the system and lasts for a time〈S〉, which accounts for the remaining factors.
Integrating (20) fromτw to τw + τ with C(τw, τw) = 1 gives

C(τw + τ, τw) ∼
(

1 +
τ

τw

)−α
(21)

whereα = limτ→∞(τ 〈ncov〉)/(N〈S〉). ThatC(τw + τ, τw) depends onτ andτw only through
the ratioτ/τw demonstrates that the system ages. Although this derivation is sufficient to
explain our simulation results, it is not clear that the coarse graining assumption is valid as
τ → ∞, even for arbitrarily large systems. It is also not obvious if this procedure can be
extended to account for the results of Boettcher and Paczuski [21,22].

If indeed the Bak–Sneppen modeldoesage in event timeτ , this calls into question the
usual assumption of stationarity in most previous studies of the Bak–Sneppen model, since an
ageing system does not obey time-translational invariance and hence cannot be stationary. It
is possible that previous studies have relied too heavily on one-time functions such as critical
exponents etc., which may appear to tend to stationary values even when two-time functions are
still evolving. This is a subtle question and further investigation would be desirable. Note that
the ageing we have observed (apparent or otherwise) isdimensional dependent—it onlyholds
in low dimensions, not in the mean field. Hence the assumption of stationarity in section 2.3
is still valid.

Turning now to consider avalanche timeτ av, the same coarse-graining assumptions lead
to the following differential equation forC(τ av

w + τ av, τ av
w ):

dC

dτ av
≈ −C〈ncov〉

N
(22)

which differs from (20) by a factor of〈S〉. This can be solved as before to give

C(τ av
w + τ av, τ av

w ) ∼ exp

{
−a

(
τ av

w

N

) γ

γ−1

[(
1 +

τ av

τ av
w

) γ

γ−1

− 1

]}
(23)

wherea is an arbitrary constant. Since this expression tends to zero asτ av
w →∞ for all

τ av > 0, we conclude that the system doesnot age in avalanche time. This may relate to the
failure to observe ageing in the sandpile model [21], where a timescale similar toτ av is usually
employed. Note that this conclusion also holds in the mean field caseγ = 1, although the
form of (23) is different. The numerical plot ofC(τ av

w +τ av, τ av
w ) for a one-dimensional system

is given in figure 6.
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Figure 6. C(τav
w + τav, τav

w ) measured in avalanche timeτav for a one-dimensional lattice with
N = 104 sites in theT = 0+ limit. From upper-right to lower-left, the curves refer toτav

w = R6,
R7, R8, R9 andR10, respectively, whereR = 2.512.

4. Conclusions

We have introduced the strongly interacting trap model, a version of Bouchaud’s trap model
which exhibits glassy behaviour for low temperatures and intermediate timeframes, but
ultimately reaches stationarity ast →∞. In the limit of zero temperature the model becomes
critical in all dimensions, including the mean field, so it has no ‘lower critical dimension’.

A lattice version of the model was also introduced which appears to behave qualitatively
similar to the mean field model in all the cases we have looked at, except one. This is the
apparent ageing in the zero-temperature limit in low dimensions in what we have termed ‘event
time’, which is absent in the mean field. This would represent a form of dimensional-dependent
ageing, but is currently only supported by numerical evidence and hence remains somewhat
speculative. It is also not clear at what dimension the ageing behaviour might start to break
down.

Although this work was originally motivated by the range of spin glass models that have
a critical point atT = 0, we do not claim any precise relationship between these systems and
our model. We merely propose that our model may serve as a caricature of glass models with
zero-temperature criticality, which, by its very simplicity, should allow for fuller analysis of
this class of systems, both theoretically and numerically. It may also serve as a link between
glass theory and models of self-organized criticality.
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Appendix A. Derivation of (7) and (8)

In this appendix we derive the expressions forω∞ quoted in (7) and (8) for non-integer and
integer values ofx = T/b0, respectively. The steady state solution is found by substituting
the form ofP∞(b) given by (6) into the definition ofω(t) given in (2). This results in the
following integral equation forω∞:

1

z + 1
=
∫ ∞

0

ρ(b)

zω∞eb/T + 1
db. (A.1)

Substitutingρ(b) = 1
b0

e−b/b0 and making the change of variablesu = e−b/T gives

1

z + 1
= x

∫ 1

0

ux

u + zω∞
du (A.2)

= x

zω∞(1 +x)
F (1, 1 +x; 2 +x;−(zω∞)−1). (A.3)

For zω∞ < 1 and non-integerx the hypergeometric functionF can be rewritten as [23]

(zω∞)−1F(1, 1 +x; 2 +x;−(zω∞)−1)

= 0(2 +x)0(−x)(zω∞)x − x 0(2 +x)0(x)

(0(1 +x))2

∞∑
k=0

(−zω∞)k
k − x (A.4)

where0(x) is the usual gamma function. Inserting this into (A.3) gives the final expression (7),
where use has been made of the identity

0(x)0(−x) = − π

x sinπx
. (A.5)

The sum on the right-hand side of (A.4) is ill defined whenx is an integer. In this case,
an equivalent expression can be found, either by integrating (A.2) directly or by substituting
x = n± ε into (7) withn an integer, and lettingε→ 0. Both methods yield the same answer,
given in (8).

Appendix B. Derivation of the T = 0+ solution (12)

It is possible to derive, in a non-rigorous manner, explicit expressions forω∞ andP∞(b) for
arbitraryρ(b) in the limitT → 0+. The starting point is the same integral equation as in (A.1),

1

z + 1
=
∫ ∞

0

ρ(b)

eb/T +ln(zω∞) + 1
db. (B.1)

This imposes significant constraints on the allowed forms ofω∞. For instance, if
T ln(zω∞)→ 0 asT → 0, then (B.1) would imply the contradictory resultz = ∞. Indeed,
if one assumes that ln(zω∞) ∼ T α, then self-consistency of (B.1) demands thatα = −1 and
therefore

ω∞ ∼ 1

z
e−bc/T (B.2)

wherebc is some arbitrary constant.
For ln(zω∞) = −bc/T , the denominator inside the integral of (B.1) is essentially constant

except around the regionb ≈ bc. Sinceρ(b) is independent ofT , we can always chooseT
small enough so thatρ(b) is slowly varying over this region, assuming thatρ(b) is continuous
atbc. Hence the integral simplifies to

1

z + 1
=
∫ bc

0
ρ(b) db (B.3)
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which fixesbc. Substituting (B.2) into the general expression forP∞(b) given in (6) results in
the final expression (12). To give some idea of typical values ofbc, a simple exponential prior
ρ(b) = 1

b0
e−b/b0 givesbc = b0 ln(1 + z−1), whereasbc = (1 + z)−1 whenρ(b) is uniformly

distributed on [0, 1].
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